digna Data Anomalies

digna Data Anomalies

digna Data Anomalies

Catch what dashboards

miss—automatically

digna Data Anomalies detects unexpected changes in your data quality and business/operational KPIs without any manual thresholds or rules.

It learns what's "normal" in your data, and alerts you the moment something deviates. From revenue spikes to missing records, column swaps to wrong delivered values - digna flags anomalies automatically so you can act before issues escalate.     

It learns what's "normal" in your data, and alerts you the moment something deviates. From revenue spikes to missing records, column swaps to wrong delivered values - digna flags anomalies automatically so you can act before issues escalate.     

It learns what's "normal" in your data, and alerts you the moment something deviates. From revenue spikes to missing records, column swaps to wrong delivered values - digna flags anomalies automatically so you can act before issues escalate.     

How digna Data Anomalies Works

The module calculates and monitors key metrics like Sum, Min, and value counts across three types of data in every column:

NUMERICAL

NUMERICAL

CATEGORICAL

CATEGORICAL

UNSPECIFIED

UNSPECIFIED

Name of Column


Type of Data


Value Example


digna Column Type


Customer Name

Text

John Smith

Unspecified Data

Type of Customer

Text

Retail / Business

Categorical Data

Account Number

Number

AT4097012346234

Unspecified Data

Account Balance

Number

167.234,01 / 12.333,89

Numerical Data

Overdraft Limit

Number

20.000 / 0

Numerical Data

Name of Column


Type of Data


Value Example


digna Column Type


Customer Name

Text

John Smith

Unspecified Data

Type of Customer

Text

Retail / Business

Categorical Data

Account Number

Number

AT4097012346234

Unspecified Data

Account Balance

Number

167.234,01 / 12.333,89

Numerical Data

Overdraft Limit

Number

20.000 / 0

Numerical Data

Metrics can be scoped to the entire table or a filtered subset, which we call a “Dataset”. In such a case, digna calculates metrics for every dataset independently.

Static Datasets

Dynamic Datasets

Hybrid Datasets

Static Datasets

  • Using Artificial Intelligence

    Using Artificial Intelligence

    Using Artificial Intelligence

  • Using Artificial Intelligence

    Using Artificial Intelligence

    Using Artificial Intelligence

  • Using Artificial Intelligence

    Using Artificial Intelligence

    Using Artificial Intelligence

Using Artificial Intelligence, digna learns the natural patterns in your data and alerts you whenever something looks implausible — whether it’s a sudden spike, a missing value, or a distribution that no longer matches expectations.


By combining AI-driven anomaly detection with flexible metric definitions, digna ensures that both data quality issues and business anomalies are flagged early — without the need to predefine thresholds or rules.

Using Artificial Intelligence, digna learns the natural patterns in your data and alerts you whenever something looks implausible — whether it’s a sudden spike, a missing value, or a distribution that no longer matches expectations.


By combining AI-driven anomaly detection with flexible metric definitions, digna ensures that both data quality issues and business anomalies are flagged early — without the need to predefine thresholds or rules.

Ready to get started?

Ready to get started?

Ready to get started?

Use Case: Bank Customer Monitoring

Numerical Data

Categorical Data

Unspecified Data

Numerical Data

Categorical Data

Unspecified Data

Numerical Data

Categorical Data

Unspecified Data

You're in Control

Not every metric is useful for every column. digna lets you:

✦ Disable metrics per column, table, or project

✦ Focus only on what matters

✦ Keep your profiling clean, fast, and tailored

Key Benefits of

Key Benefits of

digna Data Anomalies

digna Data Anomalies

Runs entirely in-database

No thresholds, no rules —

anomaly detection on autopilot

Use one engine for both data quality monitoring

and business/operational KPIs

Scales across 100s of tables with zero maintenance

Metrics are reusable — feed into validation, analytics, or AI

Runs entirely in-database

No thresholds, no rules —

anomaly detection on autopilot

Use one engine for both data quality monitoring

and business/operational KPIs

Scales across 100s of tables with zero maintenance

Metrics are reusable — feed into validation, analytics, or AI

Runs entirely in-database

No thresholds, no rules —

anomaly detection on autopilot

Use one engine for both data quality monitoring

and business/operational KPIs

Scales across 100s of tables with zero maintenance

Metrics are reusable — feed into validation, analytics, or AI

Let your data tell you what’s off — before it breaks something.

A Vienna-based team of AI, data, and software experts backed by academic rigor and enterprise experience.

Let your data tell you what’s off — before it breaks something.

A Vienna-based team of AI, data, and software experts backed by academic rigor and enterprise experience.

Let your data tell you what’s off — before it breaks something.

A Vienna-based team of AI, data, and software experts backed by academic rigor and enterprise experience.

FAQs

How does AI-based data anomaly detection work in data observability?

How does AI-based data anomaly detection work in data observability?

How does AI-based data anomaly detection work in data observability?

How does AI improve data quality monitoring?

How does AI improve data quality monitoring?

How does AI improve data quality monitoring?

Product

Integrations

Resources

Company

© 2025 digna

Privacy Policy

Terms of Service